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1 Introduction

Cryptocurrencies, including Bitcoin, Ethereum, and many others, are an exciting new tech-
nology. They are experimental distributed systems that allow users to manipulate virtual
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currency. Actual stored wealth and monetary value are at stake! Ethereum is the first
embodiment of the more general idea: it provides an expressive and flexible programming
environment for controlling and interacting with money.

This tutorial is intended for instructors who wish to conduct a smart contract program-
ming lab, or students/developers who want to learn about smart contract programming.

The first part of this lab consists of step-by-step examples illustrating basic design of
functional smart contracts. We highly recommend you take a hands-on approach, and inter-
act with these smart contract examples using the Ethereum simulator! The accompanying
materials to this guide contain everything you need to get started with experimenting, in-
cluding a virtual machine image, basic instructions, and a language reference.

The second part of this lab focuses on designing smart contracts that achieve their in-
tended goals, and are robust to attacks. Although our lab makes us of a simulator, the smart
contracts you write can also be used in the live Ethereum network1 The basic concepts we
discuss apply to other cryptocurrencies as well (including Bitcoin), so most of the skills you
learn will be transferable.

Smart contract design is inherently security-oriented. Contracts are “play-for-keeps, since
virtual currencies have real value. If you load money into a buggy smart contract, you will
likely lose it. Unlike other hands-on labs in cryptography (e.g., sending encrypted emails with
GPG), where actual attacks are unlikely or hard to observe, the attackers in a cryptocurrency
are much more apparent.

Smart contract design also requires economic thinking. We use a running example about
a rock-paper-scissors game. To help keep incentives in focus, we reward the winner with a
monetary prize, so both participants have a stake in the outcome. Other, more clearly useful
applications include derivative financial instruments, for example, that allow people to buy
or sell insurance based on the price of another cryptocurrency, or based on other events that
can be logged by the network. Smart contracts can also be used to raise crowdfunding money
with a Kickstarter-like assurance contract, that gives contributors a refund if a donations
target isnt reached. In all of these applications, we will want to guarantee that the smart
contracts are “fair” and difficult and unprofitable to exploit.

2 Basic Smart Contract Design

In this section, we demonstrate basic concepts of smart contract design by discussing several
working examples. We assume the reader has read the introduction of the accompanying
programming tutorial and knows where to find the language reference.

2.1 Simple Serpent Contract Example - Namecoin

As four first example, we will make a contract that is normally called ”namecoin”. Essen-
tially, it allow for us to create a basic “write-once” key-value store. A key value store is a

1At the time of this writing, the only live Ethereum network is a test network, since the main network
has not yet launched.
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data storage structure that allows for us to associate a key with a value, and look up values
based on their keys. This contract will have two different functions to call. The first is the
key-value registration function and the second is a function that retrieves a value associated
with a provided key.

The first function we will look at is register(key, value), which takes a key and value
and associates them with each other:

1 def register(key, value):

2 if not self.storage[key]:

3 self.storage[key] = value

4 return(1)

5 else:

6 return(-1)

Lets break this down. This contract essentially consists of an if-else statement. First, we
check to see if the key-value is already in storage. We can use the not statement to check if
nothing is stored. So if nothing is stored, we will store the value in the persistent key-value
store self.storage[]. However, what if the key is already taken? We can’t just overwrite
someone else’s key! So, we just return -1.

Now that we know how to store values, we need to be able to retrieve them. For that we
use the get(key) function:

1 def get(key):

2 if not self.storage[key]:

3 return(-1)

4 else:

5 return(self.storage[key])

This function will simply return the value associated with the key. This function is
very similar to our storage function. However, this time we don’t store anything. If there
is nothing associated with the key, we return -1. Otherwise, we return the value that is
associated with the key.

The complete code for namecoin is below:

1 def register(key, value):

2 if not self.storage[key]:

3 self.storage[key] = value

4 return(1)

5 else:

6 return(-1)

7

8 def get(key):
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9 if not self.storage[key]:

10 return(-1)

11 else:

12 return(self.storage[key])

2.2 Basic Serpent Contract Example - Easy Bank

Let’s take a quick look at an Easy Bank example from KenK’s first tutorial. [1] A contract
like this allows for a fully transparent bank to function with an open ledger that can be
audited by any node on the network (an ideal feature for ensuring banks aren’t laundering
money or lending to enemies of the state.)

Before looking at the code for the contract, let’s define our “easy bank” further. Our
bank will be using its own contractual currency and not Ether (which we will discuss and
implement in a later contract example). So, creating the currency is done within our contract.
Now that we know what our bank does (creates and sends a currency that is exclusive to
the contract), let’s define what the contract must be capable of doing:

1. Setup at least one account with an initial balance of our contract-exclusive currency

2. Take funds from one account and send our currency to another account

1 def init():

2 #Initialiaze the contract creator with 10000 fake dollars

3 self.storage[msg.sender] = 10000

4

5 def send_currency_to(value, destination):

6 #If the sender has enough money to fund the transaction, complete it

7 if self.storage[msg.sender] >= value:

8 self.storage[msg.sender] = self.storage[msg.sender] - value

9 self.storage[destination] = self.storage[destination] + value

10 return(1)

11 return(-1)

12

13 def balance_check(addr):

14 #Balance Check

15 return(self.storage[addr])

So what’s going on in this contract? Our contract is divided into two methods, let’s take
a look at the first method:
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1 def init():

2 #Initialiaze the contract creator with 10000 fake dollars

3 self.storage[msg.sender] = 10000

Our init method, from a general perspective, initializes the contract creator’s account
with a balance of 10,000 dollars. In our Ethereum contract, storage is handled with key value
pairs. Every contract has their own storage which is accessed by calling self.storage[key].
So in our example the easy bank’s contract storage now has a value of 10,000 at key
msg.sender (we’ll identify what this is in a moment).

Awesome. So who is msg.sender? msg.sender is the person who is sending the specific
message to the contract - which in this case is us. msg.sender is unique and assigned and
verified by the network. Now we have a heightened understanding of init, so lets look at
our send method.

1 def send_currency_to(value, destination):

2 #If the sender has enough money to fund the transaction, complete it

3 if self.storage[msg.sender] >= value:

4 self.storage[msg.sender] = self.storage[msg.sender] - value

5 self.storage[destination] = self.storage[destination] + value

6 return(1)

7 return(-1)

The send currency to function takes in two parameters. The first is the value in Wei
that we are sending. The second is the public key of the address we are sending it to.

First, we check that the person trying to transfer money has enough in their account to
successfully complete the transfer. If they do, we complete the transaction by removing the
value from the sender’s account and adding to the destination’s account, and we return 1. If
they do not have enough money, we simply return -1, denoting that the transaction failed.

The balance check function simply returns the value currently stored in the provided
public key’s account.

Great! We have officially worked our way through a very basic contract example! Try to
think of ways that you could improve this contract, here are some things to consider:

• What happens when the value exceeds the amount setup in the from account?

• What happens when the value is negative?

• What happens when value isn’t a number?

2.3 Moderate Serpent Contract Example - Bank

Let’s take a quick look at a smart contract that implements a bank. A contract like this
allows for a fully transparent bank to function with an open ledger that can be audited by
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any node on the network (an ideal feature for ensuring banks aren’t laundering money or
lending to enemies of the state.)

Before looking at the code for the contract, let’s define our bank further. Our bank
will allow users to store Ether in units of Wei. It must be capable of the following actions
allowing users to:

1. Deposit money into their account.

2. Transfer money from their account to another account.

3. Withdraw their money.

4. Check their balance.

1 #Deposit

2 def deposit():

3 self.storage[msg.sender] += msg.value

4 return(1)

5

6 #Withdraw the given amount (in wei)

7 def withdraw(amount):

8 #Check to ensure enough money in account

9 if self.storage[msg.sender] < amount:

10 return(-1)

11 else:

12 #If there is enough money, complete with withdraw

13 self.storage[msg.sender] -= amount

14 send(0, msg.sender, amount)

15 return(1)

16

17 #Transfer the given amount (in wei) to the destination’s public key

18 def transfer(amount, destination):

19 #Check to ensure enough money in sender’s account

20 if self.storage[msg.sender] < amount:

21 return(-1)

22 else:

23 #If there is enough money, complete the transfer

24 self.storage[msg.sender] -= amount

25 self.storage[destination] += amount

26 return(1)

27

28 #Just return the sender’s balance

29 def balance():

30 return(self.storage[msg.sender])
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So what’s going on in this contract? Our contract is divided into four methods, let’s take
a look at the first method:

1 #Deposit

2 def deposit():

3 self.storage[msg.sender] += msg.value

4 return(1)

This method is a relatively simple method. It allows for a user to deposit funds into
their account. Similar to our Namecoin example, we are using self.storage[] so we can
associate the address of the person who owns the account with the value of the ether they are
storing in their account. We do this on the third and fourth lines, where we use msg.sender

as the key. msg.sender stores the address of whomever sent the command. The other built-
in variable reference we use is msg.value. This stores the amount of ether (measured in
wei) that is sent with the transaction. When ether is sent with a command to a contract, it
is stored by the contract. Therefore, we just need to account for how much each person has
in their account, so we can provide up to their account’s balance on demand. This is stored
as the value we are associating with the key in self.storage[].

This method first adds the value sent with the deposit to the person’s account (stored in
self.storage[]). Then, it returns 1. Since something will always be deposited, there isn’t
really an error condition that can occur (where we may return something else).

1 #Withdraw the given amount (in wei)

2 def withdraw(amount):

3 #Check to ensure enough money in account

4 if self.storage[msg.sender] < amount:

5 return(-1)

6 else:

7 #If there is enough money, complete with withdraw

8 self.storage[msg.sender] -= amount

9 send(0, msg.sender, amount)

10 return(1)

This method here is doing essentially the opposite of the of the deposit method. Here
we are taking amount ether out of our account and sending it to ourself. First, we check to
make sure they have enough to withdraw. If we don’t, we return -1. We could technically
return anything, but in this guide, we use negative numbers to symbolize that there is an
error. If they do have enough wei in there account, we simply subtract that from that from
their account (still using msg.sender as a key). However, how do we send that wei back
to the account owner? Simple! We simply use the send function. The send function takes
three parameters. First, it takes the amount of gas we are sending with the contract. Since
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we are going to assume that this is being refunded to a user and not another contract, we
don’t need to send any gas with it. The next parameter is the address that we are sending
this money to. Since msg.sender own the account, we are going to send this ether back
to msg.sender. Next, since we have shown that there is at least the requested amount in
the account, we will send that amount to them. Finally, we will return 1 to show that the
operation completed successfully.

Finally, lets look at our transfer method:

1 #Transfer the given amount (in wei) to the destination’s public key

2 def transfer(amount, destination):

3 #Check to ensure enough money in sender’s account

4 if self.storage[msg.sender] < amount:

5 return(-1)

6 else:

7 #If there is enough money, complete the transfer

8 self.storage[msg.sender] -= amount

9 self.storage[destination] += amount

10 return(1)

This method allows for someone to move ether from one account to another. It works
very similarly to the deposit and withdraw methods we have already looked at. The only
difference with this one is that one of the parameters is called ”destination”. This parameter
takes in the public address of the person’s account we are sending the money to. Remember
that we use the public address as the key in our self.storage[] key-value store.

In this method, we first check to make sure there is enough money in the account. If
there is, we transfer the funds between the accounts.

I will leave it as an exercise to you to see how the balance function works.

2.4 Student Exercise - Mutual Credit System

Now that you have looked at a few examples of ethereum contracts, it’s time for you to try
it for yourself. We are going to continue with the idea of a banking contract, but we are
going to change it up. We want you set up what we are a calling a ”Mutual Credit System”.
In this system, everyone will start off with a balance of zero. When you make a transaction,
you pay using debt, so your balance becomes negative. The person you pay gains credit, so
his balance becomes positive. After all of the transactions, people will have varying amounts
of money, some positive, some negative. We are limiting the amount of debt one is allowed
to spend to 1000 credits. Note that we will be using our own currency, not ether.

To complete this task you will need to use self.storage[] for persistent storage. You
will need to create two methods. The first ”transfer” which accepts a public key and a value.
This will transfer the credits from the msg.sender’s account to the public key’s account
(return 0). If the account that is sending the credits will exceed 1000 credits of debt, the
transaction should be declined (return -1).
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You will also need to implement a balance method that takes in the public key the sender
wants the balance of, and returns the balance of that public key.

For more information on Mutual Credit Systems, visit http://p2pfoundation.net/

Mutual_Credit.

3 Designing a Secure Contract.

In this section, we’ll explore the security and incentive alignment pitfalls in designing a
smart contract. We’ll use an easy-to-understand application as a running example, based on
a Rock-Paper-Scissors game. We then analyze a plausible (but subtly buggy) initial imple-
mentation, pointing out its flaws. Mistakes resembling these were actually observed in our
Smart Contract Programming Lab in “CMSC 414 - Undergraduate Security”. This section is
centered around the exercises. We provide hints to guide the reader towards discovering how
to improve on them. Our “reference” solution can be found in the accompanying materials.

3.1 Corner Cases in Coding State Machines

The first contract design error we will talk about is contracts causing money to disappear.
Some contracts require the participants to send an amount of money to enter the contract
(lotteries, games, investment apps). All contracts that require some amount of money to
participate have the potential to have that money lost in the contract if things don’t go
accordingly. Below is the add player function from our RPS contract. The function adds
a player and stores their unique identifier (msg.sender). The contract also takes a value
(msg.value) that is sent to the contract. The value is the currency used by Ethereum, ether.
Ether can be thought of as similar to bitcoins. Bitcoins are generated by mining, and can be
used for trading and to pay transaction fees; ether is also mined, and is used as the currency
to fuel all contracts as well as the currency that individuals will trade within contracts. Let’s
dive in and see if we can find a contract theft error in the add player contract below:

1 def add_player():

2 if not self.storage["player1"]:

3 if msg.value == 1000:

4 self.storage["WINNINGS"] =

5 self.storage["WINNINGS"] + msg.value

6 self.storage["player1"] = msg.sender

7 return(1)

8 return (0)

9 elif not self.storage["player2"]:

10 if msg.value == 1000:

11 self.storage["WINNINGS"] =

12 self.storage["WINNINGS"] + msg.value

9
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13 self.storage["player2"] = msg.sender

14 return(2)

15 return (0)

16 else:

17 return(0)

In this section, a user adds themselves to the game by sending a small amount of ether
with their transaction. The contract takes this ether, stored in msg.value, and adds it to
the winnings pool, the prize that the winner of each round will receive. Let’s consider two
scenarios our contract currently allows 1) a potential entrant sends too much or too little
ether, 2) there are already two participants, so additional players send transactions to join,
but are not allowed. In both of the following scenarios the contract will keep their money.
If someone sent too much or too little to enter they will not be added as a player, but their
funds will be kept. Even worse, if the match is full any person who tries to join (they have
no way of knowing it is full) will pay to play but never be added to a game! Both of these
errors will cause distrust in our contract, eventually resulting in the community not trusting
this particular contract and, more importantly, this contract’s author - you.

So how do we fix these issues? It seems like our contract needs the ability to give refunds
to users who try to sign up too late. Think about how you would do this. Go ahead and try
it and see if your idea works! Are there any other edge cases where issuing a refund should
be considered? Look at the section ”Sending Wei” in the Serpent Tutorial for inspiration.

3.2 Implementing Cryptography

Cryptography is often the first line of defense against security hazards in smart contract
programming. In the example above, players reveal too much plaintext information, which
can be used by an attacker to spoil the game. In the section, we’ll describe how to apply
cryptographic commitments to fix this problem.

In our RPS contract the user is using a numeric scale as their input with 0: rock, 1:
paper, 2: scissors. Let’s take a look at the function that registers their inputs and think
about possible vulnerabilities:

1 def input(choice):

2 if self.storage["player1"] == msg.sender:

3 self.storage["p1value"] = choice

4 return(1)

5 elif self.storage["player2"] == msg.sender:

6 self.storage["p2value"] = choice

7 return(2)

8 else:

9 return(0)

10



We can see that our input() function identifies the sender with msg.sender and then
stores their input choice in plaintext (where choice = 0, 1, or 2). The lack of encryption
means that the other player could see what their opponent played by looking at a block
that published it; with that information they could input the winning choice to ensure they
always win the prize pool. This can be fixed by using a commitment scheme. We will alter
input() to accept a hash of [sender, choice, and a nonce]. After both players have committed
their inputs they will send their choice and nonce (as plaintext) to an open() function.
open() will verify what they sent to input(). What they send to open() will be hashed, and
that hash will be checked against the hash the user committed through input(). If the two
hashes don’t match then the player will automatically lose based on the assumption they
were being dishonest. Understanding where crypto elements should be used is crucial to
justifying why others should use your contract.

In order to enhance the security and fairness of our contract we will implement a com-
mitment scheme using the hashing functions discussed earlier in this guide. The first change
that is necessary in our contract is to have the input() function accept the hash given from
the user. Our RPS application would prompt the participants in our game to send a hash of
their input and a nonce of their choosing. Thus choice = SHA3(msg.sender’s public address,
numerical input (0 or 1 or 2) + nonce). This hashed value is stored in the contract, but
there is no way for either opponent to discover the other’s input based on their committed
choice alone.

Now that we have the hash stored in the contract we need to implement an open()
function that we discussed earlier. Our open() function will take the plaintext inputs and
nonces from the players as parameters. We will hash these together with the unique sender
ID and compare to the stored hash to verify that they claim to have committed as their
input is true. Remember, up until this point the contract has no way of knowing who the
winner is because it has no way of knowing what the inputs are. The contract doesn’t know
the nonce, so it cannot understand what the choice sent to input() was. Below is the
updated, cleaned up contract (version2.py) implementing an open() and modifying check()
to work with our new scheme. Notice we have added a method open() and reorganized our
check():

1 def input(player_commitment):

2 if self.storage["player1"] == msg.sender:

3 self.storage["p1commit"] = player_commitment

4 return (1)

5 elif self.storage["player2"] == msg.sender:

6 self.storage["p2commit"] = player_commitment

7 return(2)

8 else:

9 return(0)

10
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11 def open(choice, nonce):

12 if self.storage["player1"] == msg.sender:

13 if sha3([msg.sender, choice, nonce], items=3) == self.storage["p1commit"]:

14 self.storage["p1value"] = choice

15 self.storage["p1reveal"] = 1

16 return(1)

17 else:

18 return(0)

19 elif self.storage["player2"] == msg.sender:

20 if sha3([msg.sender, choice, nonce], items=3) == self.storage["p2commit"]:

21 self.storage["p2value"] = choice

22 self.storage["p2reveal"] = 1

23 return(2)

24 else:

25 return(0)

26 else:

27 return(-1)

28

29 def check():

30 #check to see if both players have revealed answer

31 if self.storage["p1reveal"] == 1 and self.storage["p2reveal"] == 1:

32 #If player 1 wins

33 if self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 1:

34 send(100,self.storage["player1"], self.storage["WINNINGS"])

35 return(1)

36 #If player 2 wins

37 elif self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 2:

38 send(100,self.storage["player2"], self.storage["WINNINGS"])

39 return(2)

40 #If no one wins

41 else:

42 send(100,self.storage["player1"], 1000)

43 send(100,self.storage["player2"], 1000)

44 return(0)

45 #if p1 revealed but p2 did not, send money to p1

46 elif self.storage["p1reveal"] == 1 and not self.storage["p2reveal"] == 1:

47 send(100,self.storage["player1"], self.storage["WINNINGS"])

48 return(1)

49 #if p2 revealed but p1 did not, send money to p2

50 elif not self.storage["p1reveal"] == 1 and self.storage["p2reveal"] == 1:

51 send(100,self.storage["player2"], self.storage["WINNINGS"])

52 return(2)
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53 #if neither p1 nor p2 revealed, keep both of their bets

54 else:

55 return(-1)

3.3 Incentive Compatability

Designing an effective smart contract often means considering the incentives of the players
involved, and aligning these incentives with the desired behavior. Can a user profit by
using the contract in an unexpected way? Is “honest” behavior more expensive than the
alternative? We strive to make “incentive compatible” contracts, which roughly means
that using the contract as intended is the most cost-effective behavior. In a typical escrow
contract, a collateral deposit is collected from both individuals so they each have an incentive
to complete their exchange. In a game contract where inputs are encrypted, a collateral
deposit should be implemented to encourage both players to decrypt their responses within
a time frame to avoid cheating or stalling the contract. Let’s look and see how our RPS
contract holds up with regard to incentives:

1 def check():

2 #check to see if both players have revealed answer

3 if self.storage["p1reveal"] == 1 and self.storage["p2reveal"] == 1:

4 #If player 1 wins

5 if self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 1:

6 send(100,self.storage["player1"], self.storage["WINNINGS"])

7 return(1)

8 #If player 2 wins

9 elif self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 2:

10 send(100,self.storage["player2"], self.storage["WINNINGS"])

11 return(2)

12 #If no one wins

13 else:

14 send(100,self.storage["player1"], 1000)

15 send(100,self.storage["player2"], 1000)

16 return(0)

17 #if p1 revealed but p2 did not, send money to p1

18 elif self.storage["p1reveal"] == 1 and not self.storage["p2reveal"] == 1:

19 send(100,self.storage["player1"], self.storage["WINNINGS"])

20 return(1)

21 #if p2 revealed but p1 did not, send money to p2

22 elif not self.storage["p1reveal"] == 1 and self.storage["p2reveal"] == 1:

23 send(100,self.storage["player2"], self.storage["WINNINGS"])

24 return(2)

25 #if neither p1 nor p2 revealed, keep both of their bets
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26 else:

27 return(-1)

Given the version at the end of this section, our contract is almost incentive compatible.
Only one party needs to call the check() function in order for the winnings to be fairly
distributed to the actual winner, regardless of who calls. This requires one player to spend
gas to check to see who won, while the other player doesn’t need to spend any gas. There
is currently no way to require two people to spend equal amount of gas to call one function.
How could this affect the incentives of the contract?

In the next section we will look at how the current block number and the amount of
blocks that have arrived previously affect the security of a contract. We will look to alter
our contract further so that if someone doesn’t open (verify) their rock/paper/scissors com-
mitments within a given timeframe (i.e. 5 blocks after they are added to the contract), then
the contract would send the money to the person who did verify their input by the deadline.
This incentivizes both users to verify their inputs before the check() function is called after
a random amount of blocks have been published. If you don’t reveal your commitment, then
you are guaranteed to lose.

3.4 Original Buggy Rock, Paper, Scissor Contract

1 data winnings_table[3][3]

2

3 def init():

4 #If 0, tie

5 #If 1, player 1 wins

6 #If 2, player 2 wins

7

8 #0 = rock

9 #1 = paper

10 #2 = scissors

11

12 self.winnings_table[0][0] = 0

13 self.winnings_table[1][1] = 0

14 self.winnings_table[2][2] = 0

15

16 #Rock beats scissors

17 self.winnings_table[0][2] = 1

18 self.winnings_table[2][0] = 2

19

20 #Scissors beats paper

21 self.winnings_table[2][1] = 1

14



22 self.winnings_table[1][2] = 2

23

24 #Paper beats rock

25 self.winnings_table[1][0] = 1

26 self.winnings_table[0][1] = 2

27

28 self.storage["MAX_PLAYERS"] = 2

29 self.storage["WINNINGS"] = 0

30

31 def add_player():

32 if not self.storage["player1"]:

33 if msg.value == 1000:

34 self.storage["WINNINGS"] = self.storage["WINNINGS"] + msg.value

35 self.storage["player1"] = msg.sender

36 return(1)

37 return (0)

38 elif not self.storage["player2"]:

39 if msg.value == 1000:

40 self.storage["WINNINGS"] = self.storage["WINNINGS"] + msg.value

41 self.storage["player2"] = msg.sender

42 return(2)

43 return (0)

44 else:

45 return(0)

46

47 def input(choice):

48 if self.storage["player1"] == msg.sender:

49 self.storage["p1value"] = choice

50 return(1)

51 elif self.storage["player2"] == msg.sender:

52 self.storage["p2value"] = choice

53 return(2)

54 else:

55 return(0)

56

57 def check():

58 #If player 1 wins

59 if self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 1:

60 send(100,self.storage["player1"], self.storage["WINNINGS"])

61 return(1)

62 #If player 2 wins

63 elif self.winnings_table[self.storage["p1value"]][self.storage["p2value"]] == 2:
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64 send(100,self.storage["player2"], self.storage["WINNINGS"])

65 return(2)

66 #If no one wins

67 else:

68 send(100,self.storage["player1"], self.storage["WINNINGS"]/2)

69 send(100,self.storage["player2"], self.storage["WINNINGS"]/2)

70 return(0)

71

72 def balance_check():

73 log(self.storage["player1"].balance)

74 log(self.storage["player2"].balance)

4 State Machine Transitions

Maintaining State in Smart Contracts In many scenarios, there is a need to adapt the
behavior of a contract depending on the the messages it receives, or depending on how much
time has passed since a certain event. In other words, several applications need a stateful
contract that acts differently to similar messages, depending on its state.

Maintaining the notion of a state in a contract requires a mechanism to handle state
transitions, which we classify into event-based and time-based. We present simple approaches
for how to express these in Serpent.

Event-based state transitions. In this case, the state changes based on messages that
the contract receives. One example is a puzzle contract that gives a reward to the first person
who solves a problem, or a game contract that waits for two players to join before starting
the game. The behavior of the contract should adapt when such events occur, as otherwise
money may be needlessly lost. Such contracts can be straightforwardly implemented by
maintaining state variables in the contract storage. The following example is a proof-of-
work contract that gives an award to the first message sender who solves a Bitcoin-like
proof-of-work puzzle.

1 def init(puzzle, target):

2 self.storage["isSolved"] = 0 ## State variable

3 self.storage["puzzle"] = puzzle

4 self.storage["target"] = target

5

6

7 def receiveSolution(solution):

8 if(self.storage["isSolved"] == 0 AND

9 SHA3([self.storage["puzzle"], solution],2) < self.storage["target"]):

10 send(msg.sender, 10000) # Sending reward
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11 self.storage["isSolved"] = 1 # Changing the state variable

Time-based state transitions. Employing event-based transitions may not be enough
to capture all the possible scenarios in typical applications. Think of an auction that accepts
any number of bidders, but sets a specific deadline after which no new bids are accepted.
The contract in this case should have a way to decide whether to accept bids or not based
on the time of the transaction.

There are two simple ways to use refer to the current time in a contract: block.timestamp
or block.number. For example, the following is a fragment of an auction contract that only
accepts bids submitted before a deadline. The deadline is 100 blocks ahead from the contract
creation time.

1 def init():

2 self.storage["deadline"] = 100 + block.number

3 # Think of other auction details

4

5 def receiveBid(bid):

6 if(block.number <= self.storage["deadline"]):

7 # accept bid

8 else:

9 # abort

(Exercise: Think how to complete the auction contract above. You can add other meth-
ods.).

Hybrid transitions. Sometimes, complex contracts will need to incorporate both kinds
of state transitions. For example, consider a fundraising contract that either concludes im-
mediately after a certain target amount of money is collected, or else after a month passes
without reaching the target. Therefore, the contract must change its state if a month passes,
or when the contract balance exceeds a threshold, whatever happens first.

(Exercise: Think how to write a fundraising contract as described above).
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